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Color in nature presents a striking dimension of variation, though understanding its function and evolution largely depends on our abil-
ity to capture the perspective of relevant viewers. This goal has been radically advanced by the development and widespread adoption 
of color spaces, which allow for the viewer-subjective estimation of color appearance. Most studies of color in camouflage, apose-
matism, sexual selection, and other signaling contexts draw on these models, with the shared analytical objective of estimating how 
similar (or dissimilar) color samples are to a given viewer. We summarize popular approaches for estimating the separation of samples 
in color space and use a simulation-based approach to test their efficacy with common data structures. We show that these methods 
largely fail to estimate the separation of color samples by neglecting 1) the statistical distribution and within-group variation of the data 
and/or 2) the discriminability of groups relative to the observer’s visual capabilities. Instead, we formalize the 2 questions that must be 
answered to establish both the statistical presence and theoretical magnitude of color differences, and propose a 2-step, permutation-
based approach that achieves this goal. Unlike previous methods, our suggested approach accounts for the multidimensional nature of 
visual model data and is robust against common color-data features such as heterogeneity and outliers. We demonstrate the pitfalls of 
current methods and the flexibility of our suggested framework using an example from the literature, with recommendations for future 
inquiry.
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INTRODUCTION
The study of  color in nature has driven fundamental advances in 
ecology and evolutionary biology (Cuthill et  al. 2017). Color is a 
subjective experience, however, so substantial effort has been ded-
icated to measuring and representing colors “objectively” (Garcia 
et al. 2014; Johnsen 2016) through visual models that consider the 
perspective of  ecologically relevant viewers (Kemp et  al. 2015; 
Renoult et al. 2017). These models have significantly advanced the 
study of  color traits by allowing researchers to account for the fac-
tors influencing the generation and reception of  visual information, 
such as the structure of  signals and viewing backgrounds, the prop-
erties of  veiling and incident light, and the attributes of  visual sys-
tems (Chittka 1992; Vorobyev and Osorio 1998; Kelber et al. 2003; 
Endler and Mielke 2005).

Several forms of  visual models are currently used, which vary 
in their assumptions about the nature of  visual processing (Chittka 
1992; Vorobyev and Osorio 1998; Endler and Mielke 2005). These 
models function by delimiting a color space informed by the num-
ber and sensitivity of  photoreceptors in an animal’s retina (Renoult 
et al. 2017). Individual colors are then represented in this space as 

points, with their location determined by the differential stimula-
tion of  the viewers’ receptors.

This color space representation is convenient for several reasons. 
It offers an intuitive way of  analyzing phenotypes that we cannot 
measure directly: we can estimate how animals with different visual 
systems “see” different colors by representing them in a Cartesian 
coordinate system, producing a receiver-dependent morphospace 
(Kelber et  al. 2003; Renoult et  al. 2017). Furthermore, it allows 
estimating how similar or dissimilar colors are to a given observer, 
by measuring the distance between color points in its color space 
(Vorobyev et  al. 1998; Vorobyev and Osorio 1998; Endler and 
Mielke 2005). Crucially, we can test and refine these models using 
psychophysical data (e.g. Maier 1992; Vorobyev et  al. 2001; Dyer 
and Neumeyer 2005; Garcia et al. 2017), to estimate the magnitude 
of  color differences and ultimately predict whether an observer 
could effectively discriminate pairs of  colors (Chittka 1992; 
Vorobyev and Osorio 1998). This final point is critical to many 
tests of  ecological and evolutionary hypotheses, such as the effi-
cacy of  camouflage (Pessoa et al. 2014; Troscianko et al. 2016), the 
presence of  polymorphism or dichromatism (Schultz and Fincke 
2013; Whiting et  al. 2015), the accuracy of  mimicry (O’Hanlon 
et  al. 2014; White et  al. 2017), the extent of  signal variability 
among populations or species (Delhey and Peters 2008; Rheindt 
et  al. 2014; Dalrymple et  al. 2015), or the effect of  experimental Address correspondence to R. Maia. E-mail: rm3368@columbia.edu
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manipulations (Barry et  al. 2015; White and Kemp 2017). At the 
heart of  these inquiries lies the same question: how different are 
these colors to the animal viewing them?

Challenges in estimating the discriminability of 
color samples

The receptor noise-limited model of  Vorobyev and Osorio (1998) 
has proven particularly useful for addressing questions of  discrimi-
nability and color difference. The model is focused on receptor-level 
processes, and assumes that chromatic and achromatic channels 
operate independently (which does not necessarily hold beyond the 
receptor level in some species, such as humans; Nathans, 1999), 
that color is coded by n − 1 unspecified opponent mechanisms 
(where n is the number of  receptor channels), and that the limits to 
color discrimination are set by noise arising in receptors (Vorobyev 
and Osorio 1998; Vorobyev et  al. 1998). This noise is dependent 

on the receptor type and abundance on the retina which, along 

with Weber’s law k
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the unit of  Just Noticeable Differences (JND; Vorobyev et al. 2001). 
Distances calculated in this manner correspond to the Mahalanobis 
Distance DM, and represent distances between points standardized 

by the Weber fraction; i.e. 
signal
noise

 (Clark et al. 2017).
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to be indistinguishable, while values greatly above this threshold 
are likely distinct. This provides a useful standard for estimating 
the similarity of  groups of  points in color space: the greater the 
distance between colors, the less alike they are. If  differences are, 
on average, above an established threshold, then we can consider 
the groups different: sexes dichromatic, mimetism imperfect, and 
crypsis ineffective. This offers a clear link between variation and 
classification within a sensory framework and has been widely used 
for this purpose (Delhey and Peters 2008; Schultz and Fincke 2013; 
O’Hanlon et  al. 2014; Barry et  al. 2015; White and Kemp 2017; 
White et al. 2017).

To adequately compare samples of  colors, however, it is necessary 
to determine if  the average distance between them is both statisti-
cally and biologically meaningful (i.e. above-threshold; Endler and 
Mielke 2005). Commonly, an “average colour” for each group is 
derived by taking a mean reflectance spectrum or by averaging their 
position in color space. In either case, the color distance between 
groups is then calculated from these mean quantum catches per-
receptor per-group—their centroids in multivariate space (Figure 1, 
bold arrow). However, the centroid obtained from arithmetic means 
of  receptor coordinates is not an appropriate measure of  location 
for this purpose, since color distances are perceived in a ratio scale 
(Cardoso and Gomes 2015). Instead, the geometric mean must be 
used. Furthermore, since the result is a single value representing the 
multivariate distance between-group means, there is no associated 
measure of  uncertainty or precision that would allow for the statis-
tical testing of  differences between samples (e.g. Avilés et al. 2011; 
Burns and Shultz 2012; Maia et al. 2016).

An alternative approach calculates the pairwise distances 
between all points in group A  and group B, then averages these 
distances to obtain a mean distance between groups (Figure 1, thin 
arrows; e.g. Dearborn et  al. 2012; Barry et  al. 2015). In cluster 
analyses, this is called the “average linkage” between groups (Hair 

et  al. 1998). This is an appealing method, providing measures of  
variation among distances, and thus a t-test or equivalent can be 
used to test if  differences are greater than a given threshold. The 
average linkage, however, is also inadequate because it conflates 
within- and among-group variation. This is because Euclidean 
distances (and by extension JND’s) are translation-invariant: they 
ignore the position of  points in color space and the direction of  
the distance vectors, reflecting only the magnitude of  differences 
between 2 points. Therefore, the average linkage reduces to a meas-
ure of  spread, and will scale with both within- and between-group 
distances (Figure 1, inset).

As these issues show, hypotheses of  discriminability and color 
difference have primarily focused on testing whether the difference 
between samples is above a theoretical threshold. However, the con-
venience of  such thresholds belies the fact that simply comparing 
means between groups is not sufficient to infer, statistically, whether 
samples are different. To answer if  2 groups are different, one must 
compare the variation between- and within-groups. This is partic-
ularly problematic in the case of  colors that function as signals in 
social interactions (e.g. Kemp and Rutowski 2011). For a trait to 
function in this context, the observer must be able to tell signals 
of  “low” and “high” quality apart. This means that, by definition, 
most pairs of  individuals should be readily distinguishable. The trait must 
be highly variable and color distances should be above the thresh-
old of  discrimination (Delhey et al. 2017), otherwise no information 
can be extracted by an observer comparing phenotypes.

Consider a hypothetical species that uses color in mate choice 
but is not sexually dichromatic (Figure  1). In this species, color 
is highly variable and, on average, pairs of  individuals are 

Distances
50

0
30

Figure 1
The link distance (ie, average pairwise distance between groups) conflates 
within- and among-group variation. Here, 2 samples were drawn from the 
same simulated distribution. Thin arrows represent distances between a 
random point in the first sample (blue) and all points from the second sample 
(red), all of  which are greater than the distance between the geometric 
means of  the 2 samples (“x”, bold arrows). Inset shows the histogram of  
pairwise distances among groups, and how their average (dashed line) is 
greater than the mean distance (bold line).
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discriminable, but there is no consistent male–female difference. 
Therefore, if  a researcher sampled this species and calculated the 
average distance between all pairs of  individuals, regardless of  
sex, these should be largely greater than 1 JND. However, if  they 
took separate samples of  males and females, then all pairwise 
distances (the average linkage) between sexes will be also greater 
than 1 JND, despite them being sampled from the same (statisti-
cal) population.

The limitations of current methods for comparing 
color space distributions

Several methods have been proposed to avoid the aforementioned 
issues by accounting for the relative distributions of  samples in color 
space. Eaton (2005), for example, noted that within-group varia-
tion influenced the conclusions on the extent of  avian dichroma-
tism, and thus tested for intersexual differences in photon catches 
separately for each receptor. However, this ignores the multivariate 
nature of  visual model data by failing to account for multiple com-
parisons and correlations among receptor catches (which are criti-
cal, since any n-receptor visual system can be represented in n − 1 
dimensions; Kelber et al. 2003).

An alternative, multivariate metric suggested by Stoddard and 
Prum (2008) is the volume overlap. In this approach, the volume 
occupied by a sample of  colors is estimated from its enveloping 
convex hull, and separation between samples is inferred from their 
overlap. Stoddard and Stevens (2011) used this metric to show that 
a greater overlap in color volume between cuckoo and host eggs 
is associated with lower rejection of  parasitic eggs. This approach 
is appealing because it considers the distribution of  color points 
in multivariate space, though there are limits to its interpretation: 
1)  there is a lower bound to group separation (i.e. if  samples do 
not overlap, there is no distinction between cases where samples are 
near or far apart in color space) and 2) it is unclear how variation in 
volume overlap should be interpreted biologically (e.g. how biologi-
cally relevant is the difference between 20% or 40% overlap?). It is 
also particularly sensitive to outliers, because the volume defined by 
a convex hull does not lend itself  to a probabilistic interpretation, 
leading to the often-unacknowledged assumption that the sampled 
data reflects the true boundaries of  the population (however, “loose 
wrap” hypervolumetric methods exist; to our knowledge, these have 
not been applied to color studies; Blonder et  al. 2017). Finally, in 
its original implementation this method does not consider recep-
tor noise or discrimination thresholds (but incorporating this is 
straightforward; see below).

The most robust attempt at comparing distributions of  colors 
was proposed by Endler and Mielke (2005), who devised a non-
parametric rank distance-based approach based on the least sum 
of  Euclidean distances, compared through multi-response permuta-
tion procedures (LSED-MRPP). This multivariate approach is pow-
erful because it calculates an effect size based on the relationship of  
between- and within-group distances. However, this single statistic 
captures differences between samples not only in their means, but 
also in their dispersion and correlation structure (i.e. shape; Endler 
and Mielke 2005). Like other distance-based methods, it is sensitive 
to confounding variance heterogeneity among samples when testing 
for differences in location (Warton et al. 2012; Anderson and Walsh 
2013). Despite its considerable strengths, this method has seen little 
adoption over the last decade, largely due to limitations in imple-
mentation and accessibility.

The shortcomings of  these methods reflect the fundamental fact 
that the question of  discriminability actually represents a test of  2 

hypotheses that are seldom formally distinguished: 1) that the focal 
samples are statistically distinct and 2) that the magnitude of  their 
difference is greater than a psychophysical threshold of  detection. 
Most approaches will test one, but not both, of  these hypotheses 
through their respective nulls, and often with no estimate of  uncer-
tainty. We explore these issues using a simulation-based approach 
by testing the efficacy of  popular methods in detecting the separa-
tion of  groups in color space. We then propose a flexible solution 
that avoids these problems, demonstrating its utility using an exam-
ple from the literature.

METHODS
Simulation procedures

To compare methods for detecting group separation in color space, 
we simulated data analogous to that obtained from applying an 
avian visual model to spectral reflectance data. Birds are tetra-
chromatic (Hart 2001), and colors will thus be represented by the 
quantum catches of  its 4 photoreceptors (though the procedure 
followed here can be applied to visual systems with any number 
of  receptors). For each replicate, we simulated 2 samples defined 
by 4 variables (USML photoreceptors) taken from log-normal dis-
tributions (since quantum catches are non-negative and noise-
corrected distances follow a ratio scale, as defined by the Weber 
fraction, described above). We generated samples following 2 dif-
ferent scenarios: first, we simulated varying degrees of  separation 
(i.e. effect sizes) to evaluate the power and Type I error rates of  the 
approaches tested. Second, we simulated threshold conditions to 
evaluate the performance of  different approaches in correctly clas-
sifying whether samples are above-threshold.
For the first set of  simulations (power and error rates), we simu-
lated the quantal catch of  each photoreceptor i for the first sam-
ple (group A) by drawing from a log-normal distribution with mean 
µiA  seeded from a uniform distribution U ( , ),0 10  and standard 
deviation proportional to the mean: σ µi i iAa= ,  with a Ui ~ ( , . )0 0 5  
(note that, for these simulations, µ and σ refer to the mean and 
standard deviation of  the random variable itself, not in log scale). 
To generate 2 samples with varying degrees of  separation propor-
tional to the within-group variance, we used a multivariate effect 

size S obtained by calculating a constant d
S
ni i=

Ö
,σ  where n is the 

number of  photoreceptors (in this case, 4 and σi  is the standard 
deviation of  the sample. We then drew a second sample (group B) 
defined by µ µiB iA id= +  and σi .  Thus, our simulations effectively 
produced 2 samples with Mahalanobis Distance DM ∼ S (calculated 
as the distance between centroids of  the 2 groups weighted by their 
pooled variance-covariance matrix). We simulated data for S = {0, 
0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2, 2.5, 3.0} (Figure 2), replicated 200 
times for sample sizes N = {10, 20, 50, 100} each.

For the second set of  simulations (threshold conditions across 
a range of  within-sample variation), we followed a similar proce-
dure. Group A  was sampled from a log-normal distribution with 
µ iA U~ ( , )0 10  while σi  was taken from an exponential distribu-
tion σ λi Exp~ ( ).=1  To obtain a second sample, group B, that was 
separated from group A with an average approximate distance of  
1 JND given a Weber fraction of  0.1 for the long-wavelength pho-
toreceptor (Vorobyev et al. 1998), we drew from log-normal distri-
butions with µ µiB i iAd= ,  where di U~ ( . , . ),0 88 1 12  resulting in an 
average distance between geometric means (hereafter, “mean dis-
tance”) of  1.11 (95% quantiles: 0.35–2.77 JND) and within-group 
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average pairwise distance of  4.46 (95% quantiles: 1.03–11.10 JND) 
after 1000 replicates.

After the 2 groups were simulated, we used the R package pavo 
(Maia et al. 2013) to calculate colour distances using relative recep-
tor densities of  {U, S, M, L} = {1, 2, 2, 4} and Weber fraction for 
L = 0.1. We calculated the within-group average pairwise distance, 
as well as the distance between sample geometric means.

We then used four procedures to test for differences between 
groups. First, we used a distance-based PERMANOVA (hereaf-
ter “distance PERMANOVA”) using the adonis function from the 
R package vegan (Oksanen et  al. 2007). This non-parametric 
approach uses distances to calculate a pseudo-F statistic, simulat-
ing a null distribution by randomizing distances between observa-
tions (Anderson 2005). We recorded if  the analysis was significant 
( . )α = 0 05  using 999 permutations for the null, as well as the R2 
as an effect size estimate. Second, we obtained XYZ Cartesian 
coordinates based on “perceptually-scaled” (i.e. noise-corrected) 
distances (Pike 2012; functionally and mathematically equivalent 
to the receptor-noise limited space of  Hempel de Ibarra et  al. 
2001) and applied a MANOVA test on these coordinates (here-
after “Cartesian MANOVA”). For simplicity, we used a sum of  
squares and cross-products matrix approach and calculated Pillai’s 
trace and its associated P value (but see discussion and Electronic 
Supplementary Material for extensions of  this approach). Third, 
we calculated the volume overlap between the 2 samples (relative 
to their combined volumes) in a tetrahedral color space defined by 
the receptors’ relative quantum catches (thus disregarding receptor 
noise; Stoddard and Prum 2008). Finally, we calculated the volume 
overlap for the XYZ Cartesian coordinates based on noise-cor-
rected distances, generating a color volume overlap that accounts 
for receptor noise.

SIMULATION RESULTS
Power and error rates

Both the distance PERMANOVA and the Cartesian MANOVA 
showed appropriate Type-I error rates, with about 5% of  our simu-
lations producing significant results when S = 0, even for small sam-
ple sizes (Figure 3). As expected, the power to detect small effects 
steadily increased as a function of  sample size, with the distance 
PERMANOVA being overall more conservative than the Cartesian 
MANOVA (Figures 3 and 4).

The 2 approaches showed some disagreement, with between 
10% and 15% of  the simulations significant only in one of  the 
2 tests (Figure  4). This disagreement was not random, with the 
Cartesian MANOVA being more likely to be significant when the 
distance PERMANOVA was not than vice-versa (Figure 4A), at an 
approximately constant rate across sample sizes, and disagreement 
being concentrated at smaller effect sizes with increasing sample 
sizes (Figure 4B).

Focusing on N = 50 simulations, our results show that mean dis-
tance was positively associated with the effect size, and the threshold 
of  significance using the distance PERMANOVA fell approximately 
at the 1 JND mark (Figure  5A; equivalent results are observed 
with the Cartesian MANOVA, not shown). Still, even around that 
threshold, significance is variable, showing that large within-group 
variation can lead to non-significant differences between groups 
despite among-group distances being above the theoretical percep-
tual threshold. Volume overlap also showed a (negative) association 
with effect size, but no specific threshold for significance is observed 
(e.g. both significant and non-significant results are observed for 
20−60% overlap; Figure 5B).

Threshold scenarios

Since results from the distance PERMANOVA and the Cartesian 
MANOVA were comparable, we focus on the former due to the 
convenience of  the R2 statistic describing among-group separation 
(but see Discussion for comments on the use of  these approaches). 
Simulations produced a wide range of  outcomes, with non-signif-
icant and significant tests both above and below the theoretical 
threshold of  1 JND (Figure  6). In contrast with the power simu-
lations above (Figure  5), the significance threshold did not match 
the theoretical perceptual threshold. As in the hypothetical exam-
ple from the Introduction, 20.2% of  the simulated cases were sta-
tistically indistinguishable despite having mean above-threshold 
distances (Figure 6, dark red). Likewise, 15.1% of  the simulations 
produced samples that were statistically different, but where this 
difference was below threshold and was therefore likely undetect-
able to its observer (Figure 6, dark blue points). These results high-
light the importance of  considering both statistical separation and 
theoretical perceptual thresholds when testing the hypothesis that 
samples are discriminable.

Figure  6A shows that, intuitively, tests were significant when 
within-group differences were small relative to among-group 

(A) (B)

Figure 2
Example simulated data for the 2 groups (red, blue) in a tetrahedral color space. Shown here are data with sample size N = 50 and effect size (A) S = 0 and 
(B) S = 3.
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differences. However, nearly all simulations—including most sig-
nificant results—fell below the 1:1 line when using the average link 
distance (i.e. the average pairwise distance) to describe intragroup 
variation. Significant results are obtained when the mean difference 
is up to 0.5 JND smaller than the within-group average link distance 
(Figure 6A, gray line intercept). Similarly, we can see that significant 
results can be obtained for fairly low levels of  among-group separa-
tion, with R2 as small as 3 or 4% (Figure 6B, horizontal line at 3%).

Though there is a negative association between R2 and vol-
ume overlap (Figure  6C), the results show low overall consistency 
between approaches: for any given value of  volume overlap, all 
possible outcomes of  significance/threshold occur—even when the 
overlap between samples is zero (Figure 6C). In other words, even 
complete separation in color volumes can result in non-significant, 
below-threshold cases, since samples can be contiguous without 
overlapping in noise-corrected color space. Likewise, samples can 
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have high overlap but be entirely distinguishable statistically and 
perceptually. Further, there is no association between volume over-
lap and mean distance between groups (Figure 6D). These results 
were unaltered by considering receptor noise in the volume over-
lap calculation, since these are still strongly and positively corre-
lated with their non-noise-corrected counterparts (see Electronic 
Supplementary Material).

A 2-step approach to estimate statistical and 
perceptual separation

As described previously, questions of  discriminability and color dif-
ference require testing 2 distinct hypotheses: if  samples are 1)  sta-
tistically and 2)  “perceptually” distinct. We, therefore, propose a 
2-step answer to such questions, which explicitly formalizes these 
hypotheses. For the first question—are the samples statistically sep-
arate in color space?—we show that both a PERMANOVA using 
noise-corrected color distances (Anderson 2005; Cornuault et  al. 
2015), and a MANOVA using noise-calibrated Cartesian coordi-
nates (Hempel de Ibarra et al. 2001; Pike 2012; Delhey et al. 2015) 
are well suited. Both exclude achromatic variation and properly 
account for the multivariate nature of  the data. There is also mini-
mal discrepancy between the two (Figures 3 and 4), so the decision 
between them may be informed by convenience and the structure 
of  the data at hand.

Once the separation of  samples is established statistically, a sec-
ond question must be answered: is this separation predicted to 
be perceptually discriminable? The statistics calculated above cannot 
answer this, since effect sizes account for both among- and within-
group variance. We, therefore, suggest this be tested independently, 
by estimating the distance in color space between-group geomet-
ric means rather than through the average pairwise distance or 
volume-overlap based metrics, which fail to accurately estimate 
group separation (Figures 1 and 6). One limitation to this statistic 
is the lack of  any measure of  uncertainty. To circumvent that, we 
suggest a bootstrap procedure in which new samples are produced 
through resampling (with replacement) of  individuals of  each 
group, from which geometric means and their distance are calcu-
lated. Repeating this procedure generates a distribution of  mean 
distances, from which a confidence interval can be estimated. If  
the groups being compared are statistically different and this boot-
strapped confidence interval does not include the theoretical thresh-
old of  adequate biological significance, one can conclude that the 
samples being compared are distinct and likely discriminable.

EMPIRICAL EXAMPLE: SEXUAL 
DICHROMATISM IN THE LEAF-NOSED 
LIZARD CERATOPHORA TENNENTII
Visually signaling animals often use distinct body parts for differ-
ent purposes, such as social signaling to mates or warning preda-
tors (Johnstone 1995; Grether et al. 2004; Barry et al. 2015). The 
nature of  intraspecific variation in color can thus inform their 
putative function, since selection may act differentially on signals 
used in different contexts. For example, traits subject to strong 
sexual selection in one of  the sexes are often dimorphic, with one 
sex (typically males) expressing a conspicuous color pattern that 
is reduced or absent in the other (Kemp and Rutowski 2011; Bell 
and Zamudio 2012).

Dragon lizards (Agamidae) are known for variable coloration 
used in both social and anti-predator contexts (Somaweera and 
Somaweera 2009; Johnston et  al. 2013). The leaf-nosed lizard 

Ceratophora tennentii has multiple discrete color patches, with appar-
ent sex differences between body parts (Figure  7). Here, we draw 
on the data of  Whiting et  al. (2015), who recorded the spectral 
reflectance of  29 male and 27 female C.  tennentii from four body 
regions (throat, labials, mouth-roof, and tongue). We used a tetra-
chromatic model of  agamid vision to test for dichromatism among 
body regions from the perspective of  conspecifics.

Following standard calculations for the log-linear receptor-
noise model, we used the spectral sensitivity of  Ctenophorus ornatus 
(λmax = 360, 440, 493, 571 nm) as modeled according to a vitamin 
A1 template (Govardovskii et  al. 2000; Barbour et  al. 2002). We 
assumed a relative photoreceptor abundance of  1:1:3.5:6, and a 
coefficient of  variation of  noise yielding a Weber fraction of  0.1 for 
the long-wavelength cone (Loew et al. 2002; Fleishman et al. 2011). 
We tested each body region separately using PERMANOVA. As 
above, we used the R package pavo for visual modeling, and the 
adonis function in the R package vegan for PERMANOVAs.

We found a statistical difference between male and female throats 
(PERMANOVA: F1,58 = 14.84, P < 0.01) and labials (F1,57 = 13.96, 
P < 0.01; Figure  7A and B), but not for tongues (F1,58  =  1.63, 
P  =  0.22) or mouth-roofs (F1,55  =  0.52, P  =  0.50; Figure  7C and 
D). However, bootstraps of  group separation suggest that intersex-
ual differences in labial color are likely imperceptible to conspecifics 
(Figure 7E; though like all such predictions this requires behavioral 
validation). Our results therefore suggest the absence of  dichroma-
tism in all but throat color from the lizard perspective, despite sta-
tistical significance for the labial region. These results thus do not 
implicate sexual selection as a strong driver of  intersexual color dif-
ferences in these few body regions of  C. ornatus.

DISCUSSION
Visual models offer a useful tool for quantifying the subjective per-
ception of  color, which—as the ultimate canvas for color-signal 
evolution—can offer valuable insight into a breadth of  biological 
phenomena. It is therefore essential that statistical considerations 
of  biological hypotheses take into account both natural variation in 
the compared samples as well as the limits to observer perception 
(as ultimately informed by behavioral and physiological data; Kemp 
et al. 2015). Here, we show that most methods typically fail to con-
sider these aspects and propose a flexible alternative that explicitly 
addresses both.

The use of  models that do not explicitly consider discrimina-
bility, such as the volume-overlap and segment-based analyses, is 
often justified on the basis of  simplifying and relaxing assumptions 
about color perception, since intricate empirical work is required 
to estimate model parameters (Vorobyev and Osorio 1998; Olsson 
et al. 2015; Kelber et al. 2017). However, we contend that, on the 
contrary, some of  these “simpler” methods actually make very 
strong latent assumptions, which are not supported by the empiri-
cal evidence. This includes the assumption that all cones contribute 
equally to color perception, that color discrimination is unequivocal 
(i.e. the magnitude of  color difference does not affect discriminabil-
ity) and that color differences follow an interval scale (as opposed 
to a ratio scale). Thus, we suggest that considering detectability 
relative to a threshold is essential for tests of  discriminability. We 
emphasize, however, that this does not necessitate the use of  the 
receptor-noise model specifically. Although we have focused on 
this popular approach here, particularly due to its utility for non-
model organisms, a breadth of  available modeling tools are capable 
of  offering similar, and in some cases superior, insight (Kemp et al. 
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2015; Price and Fialko 2018; Renoult et  al. 2017). The hexagon 
model of  Chittka (1992), for example, has been extensively tested 
and validated in honeybees, and may outperform the receptor-
noise model when suitably parameterized (Garcia et  al. 2017). It 
too offers a psychophysiologically informed measure of  percep-
tual distance, as well as discrimination thresholds, and so may be 

readily applied within our suggested framework. Indeed, the 2-step 
approach we propose can be easily and directly extended to all such 
models.

Our simulations show that both the distance PERMANOVA and 
Cartesian MANOVA perform similarly well in statistically differenti-
ating colors in perceptual space (Figure 3). Studies have pointed out 
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Figure 7
The mean (±SD) spectral reflectance of  female (red) and male (black) (A) labial, (B) throat, (C) mouth-roof, and (D) tongue (left panels), and their color space 
distribution according in a tetrachromatic model of  agamid vision (middle panels). Inset images indicate approximate sampling regions. The bootstrapped 
95% CI’s for mean distances between groups in color space (right panels). Partly reproduced, with permission, from Whiting et al. 2015.
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that distance-based methods perform poorly when the experimen-
tal design is unbalanced or when there is heteroscedasticity (though, 
among distance-based methods, PERMANOVA outperforms other 
approaches; Warton et  al. 2012; Anderson and Walsh 2013). It is 
important to note that these are often common features of, and are 
applicable to, color data (Endler and Mielke 2005) and that these 
assumptions should be considered and verified. However, this might 
still be the most robust option for high-dimensional visual systems (e.g. 
Arikawa et  al. 1987; Cronin and Marshall 1989), by reducing data 
to a single metric of  distance. Recently, Delhey et  al. (2015) advo-
cated a similar MANOVA-based approach, by applying a Principal 
Component Analysis (PCA) to the noise-corrected Cartesian coordi-
nates prior to the test. However, if  all the principal components are 
used in the MANOVA, results will be numerically identical to directly 
using the XYZ coordinates (which is preferable, since it is often tempt-
ing to discard PC axes of  low variance, which could be problem-
atic given that those axes may be involved in group differentiation). 
Though we have focused on tests of  differences in the “location” of  
colors in color space, we recognize that other characteristics—such as 
differences in dispersion and correlation structure, or the direction of  
variation among groups—might themselves be of  biological interest, 
for which a PCA approach may be particularly useful.

The MANOVA approach can also be extended to multivariate 
generalizations of  generalized linear models by using the noise-cor-
rected Cartesian coordinates as response variables (Hadfield 2010). 
These models can relax the assumptions of  heteroscedasticity by esti-
mating the variance-covariance of  the groups (Hadfield 2010) and 
can be extended to include various error and model structures, such 
as hierarchical and phylogenetic models (Hadfield and Nakagawa 
2010). Still, these approaches will only test for the statistical separa-
tion in color space, so estimating the magnitude of  that separation is 
still necessary. The bootstrapped distance provides an easy to inter-
pret measure of  uncertainty to the mean distance estimate. Under a 
Bayesian approach, the mean distance bootstrap can be substituted 
by estimating credible intervals for the distance between perceptu-
ally corrected Cartesian centroids from the posterior distribution, 
though this will be influenced by the priors adopted (Hadfield 2010, 
see Electronic Supplementary Material for an example).

Irrespective of  the method used, it is essential to parameter-
ize the underlying visual model appropriately (Garcia et  al. 2017; 
Olsson et al. 2018). The Weber fraction and receptor densities cho-
sen will strongly affect noise-corrected distances since they directly 
scale with the JND unit (Bitton et  al. 2017). Further, even under 
adequate values of  the Weber fraction, it is important to real-
ize that the unit JND usually reflects psychophysical performance 
under extremely controlled conditions (Kelber et  al. 2003; Olsson 
et  al. 2015) and that more conservative estimates of  2–4+ JND 
may be more appropriate for ecological and evolutionary ques-
tions (Osorio et  al. 2004; Martin Schaefer et  al. 2007). Sensitivity 
analyses are also useful for exploring the robustness of  conclusions 
against parameter variation, particularly in the case of  non-model 
systems where such values are often assumed or drawn from related 
species (Bitton et  al. 2017; Olsson et al. 2018). More broadly, we 
affirm recent (and ongoing) calls for pragmatism when drawing 
inferences from any such model (Marshall 2018; Olsson et al. 2018; 
Vasas et al. 2018). Color spaces are valuable tools, but ultimately 
demand ongoing feedback from physiological and behavioral tests 
to improve our understanding of  complex biological phenomena.

Our results show that insight into the biology of  color and its 
role in communication is best achieved by disentangling the implicit 
assumptions in questions of  discriminability. By bringing these 

assumptions to light, our 2-step approach offers a flexible proce-
dure for examining the statistical presence and theoretical magni-
tude of  differences between color samples. We expect that it will 
bring exciting new perspectives on the role of  color in intra- and 
inter-specific interactions and provide an efficient analytical frame-
work for the study of  color in nature.

IMPLEMENTATION AND DATA 
ACCESSIBILITY
Analyses and simulations can be found in github.com/rmaia/
msdichromatism (publication version archived, doi: 10.5281/
zenodo.1149585), and the described methods are fully imple-
mented in the R package pavo as of  version 1.3.1, available via 
CRAN. Key functions include “bootcoldist,” which calculates the 
bootstrapped confidence intervals for mean distances, whereas 
“jnd2xyz” converts chromatic distances in JNDs to noise-corrected 
Cartesian coordinates. Multi-dimensional plotting options for 
noise-converted coordinates are also available. Analyses reported in 
this article can be reproduced using the archived data of  Whiting 
et al. (2015).

SUPPLEMENTARY MATERIAL
Supplementary data are available at Behavioral Ecology online.
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